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Abstract

The generalized differential quadrature rule proposed recently by these authors is applied here to the free vibration
analyses of solid circular plates with radially varying thickness and elastic restraints. The thickness can vary radially in
any given continuous form, and it varies exponentially and linearly in this work. Two regularity conditions corre-
sponding to the plate center are expressed in explicit formulae, since they have been inexactly or even wrongly expressed
in the literature. Such errors are pointed out in the application of the differential quadrature techniques and in the
expression of the regularity conditions at the plate center. Numerical results are presented for a number of plates, il-
lustrating the versatility and accuracy of the approach. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Circular plates have many applications in civil and mechanical engineering. In reality, several compli-
cating factors may come into play: nonuniform thickness, elastic constraints, intermediate supports, and
anisotropic, composite, or laminated materials. Researchers have used various methods of analyses for such
plates. The book of Leissa (1969) is an excellent source of available information. Since then, he has pub-
lished many other survey articles on the subject. Thus, an attempt to provide a complete review here is
superfluous. This paper deals with the free vibration of solid circular plates with radially variable thickness
and elastic constraints, using the generalized differential quadrature rule (GDQR) proposed recently by Wu
and Liu (1999a,b, 2000a,b, 2001a). The thickness of the circular plates can vary radially in any given
continuous form, such as in exponential and linear form in this work. Examples are presented and excellent
results have been obtained.
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Bellman and Casti (1971) first proposed the differential quadrature method (DQM). Civan and
Sliepcevich (1983, 1984) were first to extend the DQM to engineering problems. The conventional DQM is
usually applied to differential equations of not more than second order (Bellomo, 1997; Bert and Malik,
1996). Striz et al. (1988) first solved circular plate problems using the DQM. Jang et al. (1989) extended the
DQM to high order, for example fourth order, boundary value differential equations in solid mechanics.
Striz et al. (1997) and Chen et al. (2000) used the quadrature element method, which can be categorised as a
high-order finite element method. The GDQR is a generalization of the DQM (Wu and Liu, 2000a) to any
high-order differential equation in a strict form. The GDQR has been applied to initial value differential
equations of second- to fourth- orders for the first time by Wu and Liu (1999b, 2000b) and Liu and Wu
(2000) and to two-point boundary value differential equations of fourth, sixth, and eighth orders in solid
mechanics by Wu and Liu (1999a,b, 2000a,c,d, 2001a,b) and Wu and Liu (2001a,b) and in fluid mechanics
by Liu and Wu (2001c). The GDQR is first simultaneously applied to the spatial and temporal dimensions
for initial-boundary-value problems by Liu and Wu (2001d). Multipoint ( > 3 points) boundary value
problems are first solved by Wu and Liu (2001c¢) using the DQM. Wu and Liu (2001a) have completed static
and free vibrational analyses of two-dimensional rectangular plates using the GDQR, while Wang et al.
(1998) and Chen et al. (1997) coped with the identical problems. Wu and Liu (2001a) applied three
boundary conditions at any corner of rectangular plates, while Wang et al. (1998) and Chen et al. (1997)
used four boundary conditions at any corner of rectangular plates. A close examination suggests that there
can only be three boundary conditions at any corner of rectangular plates (Wu and Liu, 2001a).

The number of regularity conditions at a solid circular plate center is another very interesting issue. Note
that the conditions at a solid circular plate center are called regularity conditions. The governing equations
of free vibration of circular plates can be expressed as fourth-order ordinary differential equations, if the
number of circumferential nodal lines is assumed under symmetrically applied uniform boundary condi-
tions. It is common knowledge that a fourth-order differential equation should have four given conditions
to determine the four integration coefficients in the general expression of its analytic solution. One im-
portant thing should be kept in mind that the DQ techniques implement a differential equation and its given
conditions directly in a strong form. However, Gu and Wang (1997) and Gutierrez et al. (1996) employed
only three (two for the outer edge and one for the center) conditions for solid circular plates and obtained
results using the DQ techniques. It is unimaginable that one would apply the DQM to Euler beam problems
using only three boundary conditions. This work discusses in detail the use of four conditions for the free
vibration of solid circular plates. The two regularity conditions at a solid circular plate center are explicitly
expressed in this work.

Four boundary conditions were applied to the free vibration analysis of annular plates using the DQM
(Wang et al., 1995; Romanelli et al., 1998), while only three conditions were employed for the free vibration
analysis of solid circular plates as pointed out just before. Romanelli et al. (1998) studied a circular uniform
annular plate with an intermediate circular support and a free inner edge. The fundamental frequencies
obtained using the DQM differed by approximately 10% from the values obtained by means of the Raleigh—
Ritz and finite element methods. For some cases, the DQM did not provide satisfactory accuracy as stated
by Romanelli et al. (1998). However, the reason why those bad results occurred was not mentioned. It is
apparent that an error must have occurred in the application of the DQM. Domain decomposition should
have been employed at the intermediate circular support, because a shear force discontinuity exists there,
and trial functions with infinite order derivatives are employed in the DQM. Domain decomposition has
been used and very accurate results have been obtained in the application of the DQ techniques to mul-
tispan Euler beams and stepped cross-section problems by Wu and Liu (2001a,b) and Wu and Liu (2000c).

This work deals with the free vibration of solid circular plates with radially variable thickness and elastic
constraints using the GDQR. Two regularity conditions at the solid circular plate origin are discussed in
detail. Numerical results are presented for a number of examples, illustrating the versatility and accuracy of
the approach.
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2. Regularity conditions at the center

A detailed study of the regularity conditions at the solid circular plate center has been carried out in
many good books (Reddy, 1999; Gould, 1999; Weaver et al., 1990; Szilard, 1974; Xu, 1982). Reddy (1999)
pointed out the two conditions at the center for axisymmetrically loaded circular plates in the static
analysis. They are zero rotation angle and shear force expression. For free vibration problems, the fol-
lowing contents are found in almost all books and other literature.

When a circular plate of isotropic material possesses uniform thickness, the governing equation for the
free transverse vibration of the plate is expressed as

2 1 2 2
(6 +1e, 10 >W+p"” W =0, (1)

o ror P og D
where r and 0 are polar coordinates. W is the transverse displacement, p the density of the material, ¢ the
plate thickness,  the circular natural frequency, and D the flexural rigidity, D = E£*/[12(1 — v?)]. E is the
elasticity coefficient and v is Poisson’s ratio.

If uniform boundary conditions are symmetrically applied about a diameter of the plate, the solution can
be assumed in the form of the Fourier series

NgE

W(r,0) = wy(r) cos k0. (2)

=~
Il

Its normal modes are described in a classical fashion using Bessel functions

NgE

W(r,0) = > [Cui(4r) + CouYi(4r) + Carli(4r) + CuKie(4r)] cos k0, 3)

=~
Il
=

where 1* = ptw?*/D. J; and Y, are the Bessel functions of first and second kind, respectively, and I; and K;
are the modified Bessel functions of first and second kind, respectively. &k is the number of circumferential
nodal lines. Cy;, Cy, C3, and Cy are integration constants.

For solid circular plates, the terms involving ¥; and K in Eq. (3) must be discarded in order to avoid a
singularity of the deflections and stresses (i.e., avoid infinite values) at the plate origin, » = 0. Then, the kth
term of Eq. (3) becomes

VV/((I”7 0) = [Clka(ir) + C3/(1k(/17’)] cos k0. (4)

Next, two homogeneous boundary conditions at the outer edge are applied to obtain the natural fre-
quencies for any number of the circumferential nodal line k.

For a fourth-order differential equation with four integration coefficients in the general analytic solution,
four conditions must be used. This law is surely suitable for Egs. (1) and (3). However, the conditions at the
center of a circular plate are not mentioned at all due to the special characteristics of the Bessel functions.
Gu and Wang (1997) used the condition at the center in a strong form and applied only one condition at the
center as follows

dw(k)/dr + Kowgy = 0, (5)

where the constant K| is set to zero when £ = 0 and to oo when k& > 0. This condition means zero rotation
angle when k£ = 0 or zero displacement when & > 0. The correct expression is that the mode is symmetric
and the rotation angle at the center is zero for any even number of £ =0,2,4,..., and that the mode is
antisymmetric and the displacement at the center is zero for any odd number of k = 1,3, 5, ... Gutierrez
et al. (1996) also employed only one condition at the origin and obtained the results for £ = 0 only.
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Many papers used the conventional Ritz method to obtain the natural frequency of solid circular plates
(Avalos et al., 1988; Laura et al., 1987; Gutierrez et al., 1996). A suitable approximation for the dis-
placement function should satisfy the essential boundary conditions in the Ritz method. However, the
following displacement function has been assumed as (Avalos et al., 1988)

W.(r,0) = cos ké)iAjk {Cjk(g)? +djk(2)2 + 1} (f)jﬂ, (©)

=0 a

where a is the radius of the circular plate and y an optimum variable. c¢; and dj are constants determined by
satisfying the boundary conditions at the outer edge.

The displacement at the origin in Eq. (6) is always zero if j + k£ > 1. This is true for all £ > 1, as supposed
in Eq. (5) by Gu and Wang (1997). It is apparent that both displacement and rotation angle are zero at the
origin for items with j + & > 2. This means that the center is clamped. This function approximation is
obviously an improper presentation of the actual situation. Therefore, it is not surprising that the higher
order frequencies obtained there have very large errors.

Takabatake et al. (1996) studied the free vibration of a circular plate with voids by means of the Galerkin
method. The following shape functions were used for a simply supported plate and clamped plate, re-
spectively:

W (r,0) = cos kQZAkm sin [% (1 —2)}, (7a)
W (r,8) = cos k@ZAkm sin {% (1 —2)} sin E (1 —2)}, (7b)

in which m is the number of radial nodal lines, and m takes an odd number for £ = 0 and an even number
for k£ > 1. The essential conditions of Egs. (7a) and (7b) coincide with Eq. (5) and, thus, have the same
problem.

Kim and Dickinson (1989) considered many complicating effects of circular plates using the Rayleigh—
Ritz method. A solid circular plate was simulated by permitting the inner radius of an annular plate to
become very small and circumambulating the conditions at the center. Gutierrez et al. (1996) and Singh and
Saxena (1995, 1996) even considered only the case of £ = 0 since this case is similar to static analysis. It is
well known that the lowest frequency may not correspond to £ = 0 in some kinds of boundary conditions.

Gorman (1982) dealt with the free vibration analyses of rectangular plates, where symmetric and anti-
symmetric characteristics and the method of superposition were widely employed. If the number of cir-
cumferential nodal lines k is assumed, circular plates also have symmetric modes for even k and
antisymmetric modes for odd k. Therefore, the authors write the regularity conditions at the solid circular
plate center as follows:

w=0, M, =0, (k=1,3,57...), (8)

dw/dr=0, ¥,=0, (k=0,2,4,6...), 9)

where M, is the radial bending moment and ¥, the effective radial shear force.
Examples to be presented in Section 5 demonstrate that these two regularity conditions at the center of
the solid circular plate give correct representations.
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3. The generalized differential quadrature rule

The GDQR is briefly described here for the completeness of the present work. A field function (x),
governed by a differential equation, is constrained by one or more than one conditions at any individual
discrete point. The solution domain is divided into points x;(i = 1,2,...,N) that include all the points with
given conditions. Note that only the governing equation is to be satisfied for some points. If n; conditions
(equations) are to be satisfied at point x;, the GDQR is expressed as follows (Wu and Liu, 1999a,b, 2000a,b)

—_

) nj—

=> EUI ZEU o (i=1,2,...,N), (10)

j=1 1

I
=

where E (which is a convenient express1on of E ) is the weighting coefficient corresponding to the rth-
order der1vat1ve at point x;, and M = Zl | 7 1S the number of the total independent variables U;, which is
expressed in a series as

{U}T — {UI; Uz,.--,(]j---,UM} — {w§0)7¢51)’...7¢§n1—1 IS N ) N g eeey ]\;lw 1)}7 (11)

where , = xpf‘” = (x;) are the function values, and xpf.’) = xp(’)(xi) (I=1,2,...,n; — 1) are their /th-order
derivatives.

It is clearly shown from Eq. (10) that the GDQR forces the same number of independent variables
Yyt (x;) (1=0,1,2,...,n,— 1) as that of the equations at a point, and that its independent variables are
chosen as the function values and their derivatives of possible lowest order wherever necessary. The DQM
only chooses function values as independent variables. When n; = 1(i = 1,2,...,N) are used in Eq. (10),
the GDQR becomes the DQM as

d’ =Y EPY; (i=12,...N). (12)

j=1

4. Application of the generalized differential quadrature rule

Using a dimensionless coordinate R = r/a, the thickness and flexural rigidity of a circular plate can be
expressed as (Fig. 1)

t=1f(R), D =Dof*(R)=Dog(R), (13)

where #, is the thickness at the center and Dy = E /[12(1 — v*)].
Linear and exponential thickness variations are used as examples

t=to(1 +nR), = 1e®, (14)

where constants # and { can be positive or negative.

4o oA
> | 55

Fig. 1. A circular plate with variable thickness ¢ = #/(R).
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The governing partial differential equation and resultant forces of circular plates with radially varying
thickness have been expressed by Reddy (1999) and Takabatake et al. (1996). For convenience, the sub-
script k of wy, is dropped in the following expressions. Substituting Eq. (2) into the governing partial
differential equation and using the dimensionless coordinate R = r/a produce

d'w 2dw 1422 d%w 1427 dw (K —4k2) dg(R) ([ d’w 2+vd*w
g(R) + ——+ w) + 2— —
drR* R AR} R*  dR? R} dR R4 dR dRr3 R dR?

14267 dw 3_k2W d’g(R) [d*w S Ldw k2W _ ptoa*@’f(R)
R drR R dR? | dR? Dy

w. (15)

The radial bending moment M, and effective shear force ¥, are written for any k as

_ Dog(R) [d®w ldw &
M=-—a" ™"\ &")] (1)

I/r:

dR2 TRdR R "
(17)
Using Egs. (16) and (17), Eqgs. (8) (second term) and (9) (second term) are re-written in term of w.
However, the R = 0s are in the denominators of Egs. (16) and (17). Note that the ¥; and K; terms in Eq. (3)

have been discarded to avoid a singularity. The terms with R = 0 in the denominators can, thus, be
eliminated for the same reason. Therefore, Egs. (8) and (9) are simplified as

_Dog(R)(d3w L d®w vk =2k — 1 dw 3k2—vk2> Dy dg(R)(dzw v dw vk2)

s ek TR R @R B T2 dR

a

d*w
Wy =0, 75 H:o, (k=1,3,57,...) (18)
dw d’w 1 dg(R) dzw)
dwi o (G, 1 ds®)dw —0, (k=0,2,4,6,...). 19
dR R0 (dR3 g(R) dR dR2 R0 ( ) ( )

The boundary conditions at the outer edge (R = 1) are expressed for elastic supports as

2 2
g(l)(dw—i— dw vk >+d5ad_w_0 (20a)

R TVaRTR") " Dydr ™
dw  d*w dw dg(1) (d*w  dw Ka®
1 e e 2 2 2 1 e 2 2 e\ =2 - 2 " —
g( )[dR3+dR2+(vk k )dR—i—(Sk vk )w] + 4R (dR2+vdR vk w) W 0,
(20b)

where @ and K are the rotational and translational spring constants, respectively.

For the conventional clamped, simply supported, free, and sliding supports, their boundary condition
expressions are obtained after a proper selection of the @ and K values and omitted here for simplicity.
Four boundary/regularity conditions for a solid circular plate can be explicitly expressed through a proper
combination of Egs. (18)—(20). Then, the fourth-order governing equation (15) is solved using the GDQR.

Resembling governing equations of structural Euler beams and axisymmetrically bending shells of
revolution (Wu and Liu, 1999b, 2000c), governing equation (15) is also a fourth-order differential equation,
which has two given conditions at each of its boundaries. The domain R C [0, 1] is divided into N points
using Chebyshev—Gauss—Lobatto sampling points. Since two given conditions exist at both R =0 and
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R =1, one has n; = ny = 2. Every other point just needs to satisfy Eq. (15),1.e., ny =n3 =--- =ny_; = 1.
When forcing these #; in Eq. (10), the GDQR expression in this case is written as

dmw Ri N+2 . )

where {U}T = {Ul, U2, ey UN+2} = {WI,W(II),WQ,W3 e ,WN,l,WN,Wg\p}.

Eq. (21) and its corresponding weighting coefficients have been derived and used by Wu and Liu (1999b,
2000c¢, 2001a) and will be applied directly in this work. Substituting Eq. (21) into Eq. (15) and Egs. (18)-
(20), respectively, the GDQR expressions are obtained for the whole problem.

N+2 N+2 2 N+2
Co 1+ 2k 2+
Co E Eu U; +2( +C1> g EU U; +< Co + VCHFCz) E E,j
j=1

R? R;
Jj=
1+ 2k2 1+2k2 VRS k* — 4K> 3k> vi?
+( 7 Co — 7 G+ )ZE,, U; +< I Co-l-FCl —ﬁQ)Wi
tawlat
O (1=2,3,... . N—1) (22)
Dy
where
1 dg(R) 1 dzg(R,)
2 C = C, = 23
SR C=5Ry Tk O Ry are @)
N+2
wi =0, ZEg?U_,:o, (k=1,3,57,..) (24)
N+2 ) 1 ( N+
ZE]jUj —O—Z U =0 (k=0,2,4,6,...) (25)
=
20 M2 ba_ )
D DB U +vwy —vkwy o =0 (26a)
=1
N+2 N+2 N+2
Z JU; +Z U+ (v =262 — 1)wy) + (3K — i) wy | + <ZENI
K 3
+ww) — vksz> —D—awN =0 (26b)
0

The derivatives of the function g(R;)(i =1,2,...,N) can be obtained using Eq. (12), since g(R;) are
known from Egs. (13) and (14). The governing equation (22), along with its four conditions selected from a
combination of Egs. (24)—(26), is reduced to a standard eigenvalue equation of order (N —2) x (N — 2).
The detailed solution procedures are omitted for simplicity. The obtained results are shown in Tables 1-5
with Poisson’s ratio v = 0.3 used in all tables of this work.
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Table 1
Values of w,a®\/pt/D for the uniform plates
Boundary conditions m The number of circumferential nodal lines, k&
0 1 2 3 4 5
Clamped 0 10.216 21.260 34.877 51.030 69.666 90.739
0? 10.216 21.260 34.877
1 39.771 60.829 84.583 111.021 140.108 171.803
1? 39.771 60.829 84.584
2 89.104 120.079 153.815 190.304 229.519 271.428
28 89.103 120.077 153.830
3 158.184 199.053 242.721 289.180 338.411 390.389
4 247.006 297.760 351.336 407.730 466.925 528.902
5 355.569 416.203 479.675 545.983 615.114 687.051
Simply supported 0 4.935 13.898 25.613 39.957 56.842 76.203
0? 4.935 13.898 25.613
1 29.720 48.479 70.117 94.549 121.702 151.518
1? 29.720 48.479 70.117
2 74.156 102.772 134.298 168.675 205.851 245.778
28 74.156 102.772 134.290
3 138.318 176.801 218.203 262.485 309.607 359.532
4 222.215 270.566 321.841 376.012 433.049 492919
5 325.849 384.069 445.216 509.268 576.203 645.992
Free 0 - - 5.358 12.439 21.835 33.495
0* - - 5.358
1 9.003 20.475 35.260 53.008 73.543 96.755
1# 9.003 20.475 35.260
2 38.443 59.812 84.366 111.945 142.431 175.735
28 38.443 59.812 84.368
3 87.750 118.957 153.306 190.692 231.030 274.252
34 87.749 118.961 153.270
156.818 197.872 242.036 289.238 339.413 392.505
5 245.634 296.540 350.534 407.562 467.573 530.521
Sliding support 0 - 3.082 8.785 16.902 27.343 40.056
0* - 8.785
1 14.682 28.399 44.904 64.130 86.004 110.464
1? 14.682 28.399 44.904
2 49.218 72.859 99.361 128.677 160.754 195.539
28 49.218 72.860 99.359
3 103.499 137.025 173.442 212.716 254.806 299.671
3 103.500 137.009 173.564
4 177.521 220.923 267.231 316.419 368.456 423.308
5 271.282 324.557 380.746 439.830 501.783 566.578

#Values obtained by Azimi (1988a,b).

5. Discussions and conclusions

The first frequencies for any number of circumferential nodal lines can be obtained accurately using only
about eight sampling points in the GDQR. To present more frequencies, 25 points are used in all Tables 1-
5. Then, the first six frequencies for any number of circumferential nodal lines converge to the third decimal
places. Tables 1 and 2 show that the obtained frequencies for uniform plates are very accurate compared
with the results (Azimi, 1988a,b), where the receptance method was applied.
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Table 2
Values of w,a’+/pt/D for the uniform plates for Ka*/D = 10
®a/D m The number of circumferential nodal lines, k
0 1 2 3 4 5

0.1 0 3.495 5.959 8.987 14.833 23.533 34.785
0? 3.495 5.959 8.987
1 11.581 21.757 36.092 53.633 74.050 97.187
12 11.581 21.757 36.092
2 39.197 60.366 84.819 112.337 142.781 176.054
24 39.197 60.366 84.819
3 88.189 119.334 153.643 191.002 231.321 274.526
4 157.152 198.178 242.323 289.510 339.674 392.757
5 245919 296.811 350.795 407.813 467.817 530.759

10 0 4.127 6.064 10.181 17.104 26.576 38.406
02 4.127 6.064 10.181
1 14.498 26.840 42.213 60.375 81.215 104.659
12 14.498 26.840 42.213
2 46.085 68.294 93.431 121.426 152.217 185.747
22 46.085 68.294 93.432
3 97.206 129.087 163.923 201.671 242.281 285.709
4 167.682 209.270 253.835 301.342 351.752 405.026
5 257.600 308.935 363.259 420.544 480.757 543.864

1000 0 4.238 6.090 10.576 18.058 28.154 40.656
02 4.238 6.090 10.576
1 15.387 28.744 45.107 64.251 86.066 110.479
12 15.387 28.744 45.107
2 49.377 72.928 99.370 128.637 160.669 195.413
24 49.376 72.928 99.371
3 103.495 136.964 173.331 212.558 254.601 299.420
4 177.402 220.750 267.006 316.142 368.126 422.924
5 271.05 324.267 380.398 439.422 501.314 566.047

#Values obtained by Azimi (1988a,b).

The authors have also tried the procedures that used one condition at the circular plate center (Gu and
Wang, 1997; Gutierrez et al., 1996). The GDQR expression for the method of one central regularity
condition is identical to that for the second-order dynamics problem (Wu and Liu, 1999b) and for the third-
order Blasius problem (Liu and Wu, 2001c), where explicit GDQR coefficients have been obtained. It is
quite interesting that the present GDQR produces almost the same and accurate results as those obtained
by Gu and Wang (1997) and Gutierrez et al. (1996). This means that a fourth-order differential equation
can be solved employing either three or four given conditions in a strong form. However, considering the
analytic solution procedures, one has discarded some terms to avoid singularity. The test functions used
here and in references (Gu and Wang, 1997; Gutierrez et al., 1996) are all polynomial functions, which have
no singularity at the origin. Therefore, the regularity conditions corresponding to singularity conditions are
automatically satisfied. This is the reason why the use of either three or four conditions gives the same
results. However, it must be emphasized that this is only a coincidence and that nth-order differential
equations should be solved using 7 given conditions.

Tables 3 and 4 present results for plates with linearly varying thickness. The GDQR results are in ex-
cellent agreement with the results obtained using the Ritz method (Gutierrez et al., 1996). Gutierrez et al.
(1996) also employed the DQM but obtained poor or even divergent results for some cases. These authors
have calculated all the same cases (Gutierrez et al., 1996) and obtained very good results using the present
GDQR. The frequencies obtained by Romanelli et al. (1998) using the DQM differ by approximately 10%
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Table 3

Values of w,a*\/pty/Dy for the nonuniform plates for # = —0.3 (Columns 4-9: GDQR results)

Boundary conditions m The number of circumferential nodal lines, k&
0 (Ritz) 0 1 2 3 4 5
Clamped 0 7.778 7.779 16.638 27.611 40.256 54.650 70.774
1 32.463 32.462 49.852 69.225 90.346 113.317 138.133
2 73.948 99.692 127.383 156.829 188.160 221.383
3 132.125 166.197 202.183 239914 279.54 321.079
4 206.971 249.362 293.639 339.640 387.538 437.357
5 298.477 349.184 401.752 456.019 512.181 570.264
Simply supported 0 4.116 4.116 11.194 20.539 31.639 44.538 59.203
1 24.728 24.727 40.162 57.739 77.155 98.482 121.699
2 62.071 85.819 111.634 139.289 168.888 200.426
3 116.096 148.150 182.217 218.102 255.939 295.733
4 186.785 227.146 269.475 313.594 359.662 407.693
5 274.132 322.801 373.401 425.760 480.060 536.322
Free 0 - - 4.380 9.786 16.788 25.380
1 7.951 7.951 17.281 29.122 42.965 58.794 76.546
2 32.675 50.308 70.274 92.235 116.24 142.252
3 74.171 100.090 128.225 158.324 190.474 224.658
4 132.353 166.561 202.905 241.170 281.478 323.826
5 207.202 249.704 294.280 340.736 389.220 439.739
Sliding support 0 - 2.145 6.918 13.158 21.007 30.448
1 11.942 11.942 23.152 36.519 51.689 68.725 87.599
2 40.922 60.492 82.145 105.630 131.043 158.372
3 86.607 114.497 144.411 176.149 209.833 245.464
4 148.964 185.165 223.345 263.325 305.252 349.138
5 227.983 272.492 318.944 367.167 417.332 469.457
Ka*/Dy = 100 0 6.994 6.994 13.409 19.478 25.345 31.996 40.013
@a/D() = 20
1 22.496 22.496 31.048 41.800 55.195 71.014 88.984
2 45.269 62.865 83.292 105.895 130.587 157.280
3 87.464 114.349 143.462 174.500 207.533 242.543
4 147.865 183.263 220.708 259.991 301.240 344.459
5 225.237 268.959 314.651 362.131 411.562 462.957
Ka* /Dy = 10 0 4.044 4.044 6.320 9.535 14.371 21.020 29.407
@LI/DO =2
1 12.628 12.629 21.842 33.740 47.667 63.567 81.371
2 37.550 55.465 75.633 97.744 121.857 147.945
3 79.679 105.851 134.169 164.404 196.655 230.913
4 138.385 172.792 209.285 247.664 288.059 330.473
5 213.637 256.295 300.99 347.541 396.099 446.676

from the values obtained by means of the Raleigh-Ritz and finite element methods. The reason is that

domain decomposition is not used in the intermediate support, as pointed out in Section 1.
Table 5 shows the frequencies of plates with exponentially varying thickness. The constant { in ¢ = f,e*

varies from —1 to +1. When the inner part is thicker (negative ), the obtained frequencies are very accurate
in comparison with those obtained by Singh and Saxena (1996). When the inner part is thinner (positive (),
the accuracy of the obtained frequencies are very good for small positive { but are not that good for big

positive (.
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Table 4
Values of w,a’+\/pty/Dy for the nonuniform plates for # = 0.3 (Columns 4-9: GDQR results)
Boundary conditions m The number of circumferential nodal lines, k&
0 (Ritz) 0 1 2 3 4 5
Clamped 0 12.663 12.663 25.607 41.762 61.313 84.092 110.021
1 46.784 46.780 71.196 99.114 130.667 165.681 204.075
2 103.411 139.226 178.695 221.928 268.751 319.081
3 182.608 229.790 280.733 335.523 393.994 456.057
4 284.389 342.920 405.298 471.580 541.614 615.306
5 408.761 478.632 552.421 630.154 711.701 796.956
Simply supported 0 5.748 5.748 16.368 30.413 47.934 68.735 92.724
1 34.564 34.562 56.364 81.880 111.154 143.972 180.228
2 85.619 118.744 155.694 196.524 241.026 289.099
3 159.201 203.656 252.013 304.323 360.391 420.114
4 255.351 311.135 370.884 434.632 502.205 573.494
5 374.084 441.195 512.324 587.486 666.527 749.333
Free 0 - - 5.973 14.791 26.592 41.317
1 10.134 10.132 23.533 41.183 62.736 87.872 116.439
2 44.064 68.871 97.806 130.807 167.584 207.993
3 100.651 136.763 177.020 221.397 269.648 321.638
4 179.830 227.247 278.828 334.573 394.250 457.731
5 281.597 340.327 403.248 470.343 541.423 616.355
Sliding support 0 - 3.666 10.377 20.361 33.378 49.345
1 17.478 17.476 33.423 52.925 76.070 102.655 132.580
2 57.195 84.574 115.682 150.603 189.130 231.167
3 119.458 158.207 200.790 247.275 297.472 351.280
4 204.299 254.393 308.396 366.370 428.127 493.567
5 311.724 373.155 438.563 507.974 581.233 658.229
Ka*/Dy = 100 0 8.838 8.838 13.948 19.019 26.464 37.137 51.106
(Da/Dg = 20
1 22.185 22.182 34.482 51.630 72.983 98.032 126.553
2 55.171 80.312 109.512 142.693 179.590 220.072
3 112.816 149.431 190.035 234.647 283.057 335.150
4 193.152 241.026 292.928 348.899 408.733 472.320
5 295.914 355.030 418.230 485.526 556.750 631.782
Ka*/Dy =10 0 3.685 3.685 5.596 9.488 17.326 28.651 43.115
@H/D() =2
1 13.500 13.498 26.287 43.589 64.919 89.899 118.347
2 46.609 71.283 100.110 133.019 169.716 210.055
3 103.022 139.085 179.291 223.617 271.820 323.764
4 182.139 229.532 281.082 336.796 396.441 459.889
5 283.876 342.592 405.493 472.567 543.623 618.531

Even for the simplest free vibration or stability problems of circular plates, the governing differential
equations have variable coefficients, and Bessel functions must be employed in analytic solutions. As
regards circular plates with variable thickness, approximate or numerical methods are usually applied. An
obvious advantage of the DQ technique is that it can easily deal with differential equations with variable
coefficients. The differential equation and corresponding given conditions are directly converted to alge-
braic equations without extra calculations. Yeh et al. (1997) used the stepped reduction method to find
general solutions for annular plates of variable thickness, and they converted a continuously varying
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Table 5
Values of w,.a>\/pty/D, for the plates with exponential thickness variation (Columns 4-9: GDQR results)
Boundary conditions m The number of circumferential nodal lines, k&
0 (Ritz) 0 1 2 3 4 5

For the case of { = —1.0

Clamped 0 4.764 4.765 9.517 17.063 24.867 33.512 43.049
1 22.051 22.052 33.261 46.119 59.451 73.664 88.813
2 51.129 51.127 68.311 86.780 105.680 125.428 146.102
3 91.995 91.986 115.072 139.206 163.701 188.998 215.194
4 144.607 173.567 203.399 233.517 264.386 296.119

Simply supported 0 2.845 2.846 6.255 12.767 19.528 27.168 35.728
1 17.224 17.224 27.003 38.634 50.802 63.898 77.966
2 43.357 43.354 59.105 76.275 93.940 112.503 132.028
3 81.288 81.271 102.921 125.719 148.937 173.003 198.002
4 130.954 158.474 186.947 215.76 245.365 275.868

Free 0 6.204 11.544 2.030 5.503 9.556 14.406
1 23.374 34.725 19.348 27.796 37.253 47.729
2 52.415 69.696 47.904 61.712 76.516 92.352
3 93.255 116.416 88.406 107.669 127.879 149.097
4 145.866 174.886 140.744 165.534 191.211 217.860

Sliding support 0 8.320 14.970 3.704 7.562 12.128 17.502
1 28.491 41.249 23.869 33.266 43.586 54.862
2 60.500 79.195 55.613 70.497 86.296 103.065
3 104.293 128.874 99.159 119.580 140.872 163.114
4 159.849 190.295 154.497 180.498 207.317 235.052

For the case of { = 1.0

Clamped 0 23.239 23.235 41.583 66.357 98.035 136.183 180.631
1 72.505 72.457 107.422 149.303 198.504 254.524 317.176
2 153.45 152.914 204.22 262.776 328.942 402.157 482.215
3 271.18 264.980 332.503 407.547 490.422 580.536 677.653
4 408.784 492.454 583.877 683.307 790.143 904.118

Simply supported 0 9.007 9.005 23.948 46.330 75.697 111.558 153.734
1 51.331 51.290 82.574 121.293 167.580 220.827 280.801
2 124.63 123.985 171.528 226.692 289.691 359.890 437.039
3 236.80 228.178 291.888 363.412 442971 529.910 623.962
4 364.069 443.894 531.715 627.726 731.274 842.069

Free 0 14.611 33.075 60.716 14.731 38.615 67.093
1 62.540 98.020 141.853 96.084 138.448 187.466
2 142.512 194.358 254.524 193.938 253.339 319.769
3 254.399 322.307 398.590 322.925 398.962 482.242
4 398.004 482.091 574.683 483.472 576.008 675.935

Sliding support 0 28.866 51.212 10.247 28.239 52.049 81.809
1 85.345 124.401 80.681 117.514 161.229 211.565
2 173.397 228.865 170.845 225.031 286.273 354.378
3 293.276 364.894 291.962 362.884 441.132 526.416
4 444.885 532.701 444.339 531.958 626.971 729.159

thickness into a stepped one. The derivation process was very complicated. The techniques used in this
work directly solve the governing equations of plates with a continuously varying thickness.
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This work deals with the free vibration of solid circular plates with radially variable thickness and elastic
constraints using the GDQR. Two regularity conditions at the solid circular plate origin are discussed in
detail. Errors in the literature are pointed out in the expression of regularity conditions and in the appli-
cation of differential quadrature techniques. Numerical results are presented for a number of examples,
illustrating the versatility and accuracy of the approach.
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